1. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.
3. Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27:523–31.
6. Marsee A, Roos FJM, Verstegen MMA; HPB Organoid Consortium; Gehart H, de Koning E, et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell. 2021;28:816–32.
14. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364–71.
16. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.
19. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10:771–85.
22. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67.
30. Sampaziotis F, Justin AW, Tysoe OC, Sawiak S, Godfrey EM, Upponi SS, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat Med. 2017;23:954–63.
37. Corsini NS, Knoblich JA. Human organoids: new strategies and methods for analyzing human development and disease. Cell. 2022;185:2756–69.
38. Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science. 2019;364:952–5.
46. Ishida Y, Tsunoda T, Hamada Y, Tsuchiya N, Koga T, Kitaguchi T, et al. Standardized methods using EUS-guided fine-needle biopsy and a minimal medium creates three pancreatic cancer organoids. Anticancer Res. 2022;42:4103–9.
52. Kim S, Woo KJ, Yang CM, Park SH, Hwang JC, Yoo BM, et al. Simultaneous establishment of pancreatic cancer organoid and cancer-associated fibroblast using a single-pass endoscopic ultrasound-guided fine-needle biopsy specimen. Dig Endosc. 2023;35:918–26.
55. Jang S, Shin S, Jeong Y, Lim D. Genome editing for engineering stem cell-derived pancreatic β cells: recent trends and future perspectives. Organoid. 2023;3:e17.
56. Saorin G, Caligiuri I, Rizzolio F. Microfluidic organoids-on-a-chip: the future of human models. Semin Cell Dev Biol. 2023;144:41–54.
59. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
63. Wang D, Wang J, Bai L, Pan H, Feng H, Clevers H, et al. Long-term expansion of pancreatic islet organoids from resident Procr
+ progenitors. Cell. 2020;180:1198–211.e19.
64. Bonfanti P, Nobecourt E, Oshima M, Albagli-Curiel O, Laurysens V, Stangé G, et al. Ex vivo expansion and differentiation of human and mouse fetal pancreatic progenitors are modulated by epidermal growth factor. Stem Cells Dev. 2015;24:1766–78.
66. Lee DH, Choo H, Choi H, Lee SH. Development in endoderm and pancreatic β-cell differentiation from human pluripotent stem cells. Organoid. 2024;4:e5.
67. Wollny D, Zhao S, Everlien I, Lun X, Brunken J, Brüne D, et al. Single-cell analysis uncovers clonal acinar cell heterogeneity in the adult pancreas. Dev Cell. 2016;39:289–301.
69. Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K, Fujii M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell. 2018;22:454–67.e6. e6.
77. Maeng JE, Seo HY, Kim SC, Ku JL. Novel drug screening platform: tumor organoid. Korean J Pancreas Biliary Tract. 2021;26:233–40.
91. Takeuchi K, Tabe S, Takahashi K, Aoshima K, Matsuo M, Ueno Y, et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts. Cell Rep. 2023;42:113420.
92. Song J, Ko J, Choi N, Jeon NL, Kim HN. Tumor spheroid-based and microtumor-based vascularized models for replicating the vascularized tumor microenvironment. Organoid. 2023;3:e6.
94. Grünwald BT, Devisme A, Andrieux G, Vyas F, Aliar K, McCloskey CW, et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell. 2021;184:5577–92.e18.
96. Feldmann K, Maurer C, Peschke K, Teller S, Schuck K, Steiger K, et al. Mesenchymal plasticity regulated by Prrx1 drives aggressive pancreatic cancer biology. Gastroenterology. 2021;160:346–61.e24.
100. Parte S, Kaur AB, Nimmakayala RK, Ogunleye AO, Chirravuri R, Vengoji R, et al. Cancer-associated fibroblast induces acinar-to-ductal cell transdifferentiation and pancreatic cancer initiation via LAMA5/ITGA4 axis. Gastroenterology. 2024;166:842–58.e5.
108. Duan X, Zhang T, Feng L, de Silva N, Greenspun B, Wang X, et al. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell. 2024;31:71–88.e8. e8.
111. Wu YH, Hung YP, Chiu NC, Lee RC, Li CP, Chao Y, et al. Correlation between drug sensitivity profiles of circulating tumour cell-derived organoids and clinical treatment response in patients with pancreatic ductal adenocarcinoma. Eur J Cancer. 2022;166:208–18.
113. Abraham N, Kolipaka T, Pandey G, Negi M, Srinivasarao DA, Srivastava S. Revolutionizing pancreatic islet organoid transplants: improving engraftment and exploring future frontiers. Life Sci. 2024;343:122545.
120. O'Malley Y, Zarei K, Vanegas OGC, Singh P, Apak TI, Coleman M, et al. Pancreatic duct organoid swelling is chloride-dependent. J Cyst Fibros. 2024;23:169–71.
122. Park JH, Byeun DG, Choi JK. Progress, prospects, and limitations of organoid technology. Organoid. 2022;2:e9.